

MONTEZUMA MINING COMPANY LTD

PO Box 8535 Perth BC WA 6849 133 - 135 Edward Street Perth WA 6000 Telephone +61 8 9228 4833 Facsimile +61 8 9328 8302 info@montezumamining.com.au www.montezumamining.com.au A8N 46 119 711 929

9 July 2009

ASX CODE: MZM ISSUED SHARES: 41.69M 52 WEEK HIGH: \$0.20 52 WEEK LOW: \$0.02

CONTACT:

JUSTIN BROWN
Managing Director
+61 438 745 675

BOARD:

Denis O'Meara: Chairman Justin Brown: MD Ian Cornelius: Non-Exec

KEY PROJECTS:

PEAK HILL (100%) Gold

DURACK (earning 85%)
Gold

MT PADBURY (100% of gold) Gold, Manganese, Iron

BUTCHER BIRD (100%) Manganese, Copper

KEY SHARE POSITIONS:

AUVEX RESOURCES LTD 10,000,000 FPO Shares

BUXTON RESOURCES LTD 2,000,000 FPO Shares

PEAK HILL RESOURCE EXTENSION DRILLING RETURNS GOLD VALUES UP TO 31.6 g/t

- RC programme comprised 28 holes for 3,721m targeted at extending the current known resources.
- Highlights include 4m @ 8.62 g/t Au from 172m including 1m
 @ 31.6 g/t Au and 5m @ 3.2 g/t Au from 5m.
- Planning of next round of drilling underway.

Montezuma is pleased to announce initial assay results from the

recently completed RC drilling programme at its 100% owned Peak Hill project.

The programme included drilling at Jubilee, Harmony, Enigma and Fiveways (Main Pit). The planned drilling at Durack has been postponed until the next drilling programme.

The results have highlighted a number of extensions to existing resources and will provide the basis for the next round of drilling to be commenced in the near term.

The course gold issue continues to provide challenges, particulary at Jubilee. Test work is ongoing, however early indications suggest that the current default assay methodology may be underestimating the gold content of the samples by an average of 25%.

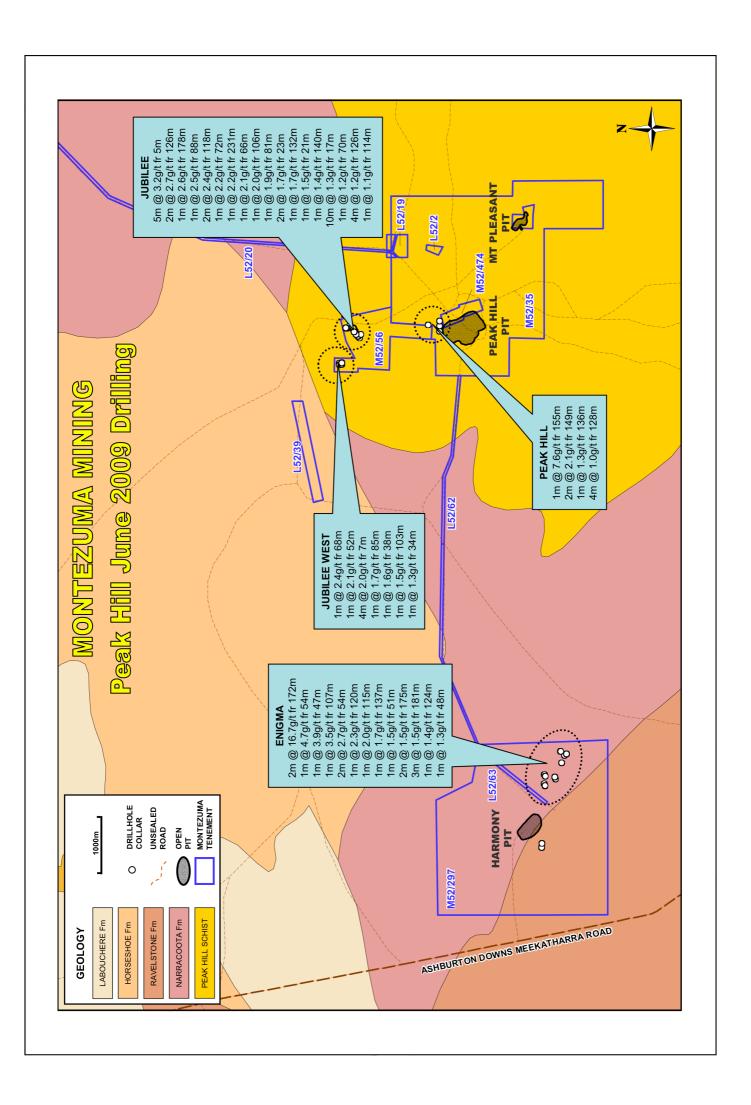
Optimising our assay methodology is certainly a priority going forward given the clear impact this issue may have on resource estimation and future commercialisation of the gold resources at Peak Hill.

Montezuma's strategy is to continue to extend the known gold resources at the Peak Hill project with the goal of recommencing gold production in the medium term.

The current programme continues to confirm the potential of the project to yield significant additional ounces and the company looks forward to rolling out further drilling programmes and updated resource estimates in the near term.

HoleID	Easting	Northing	Azimuth	Dip	From	То	Au	Composite
E09001	664365	7161739	60	-60	47	48	3.9	
					51	52	1.5	
					54	55	2.9	
					55	56	2.4	2m @ 2.7 g/t
E09006	664897	7161352	60	-60	107	108	3.5	
					120	121	2.3	
					124	125	1.4	
E09007	664922	7161313	60	-60	175	176	1.1	
					176	177	1.8	2m @ 1.5 g/t
					181	182	2.5	
					182	183	0.8	0 04 5 %
E00000	664764	7161409	60	60	183	184	1.2	3m @ 1.5 g/t
E09008	664764	7 16 14 09	60	-60	48 54	49	1.3	
					115	55 116	4.7 2.0	
					137	138	1.7	
					172	173		
					172	173	31.6 1.8	
					173	175	0.3	
					174	176	0.3	4m @ 8.62 g/t
J09003	672470	7165379	130	-60	106	107	2.0	<u>& 0.02 g</u> /t
J09004	672426	7165343	90	-60	66	67	2.1	
J09005	672394	7165303	130	-60	72	73	2.2	
J09006	672362	7165275	130	-60	70	71	1.2	
J09007	672427	7165247	290	-60	5	6	4.3	
					6	7	5.4	
					7	8	0.4	
					8	9	2.6	
					9	10	3.3	5m @ 3.2 g/t
J09008	672544	7165539	180	-60	21	22	1.5	
					81	82	1.9	
					88	89	2.5	
100000	070500	7405504	400	00	132	133	1.7	
J09009	672539	7165521	180	-60	23	24	2.4	0 @ 4.7 #
					24	25	1.0	2m @ 1.7 g/t
					118 119	119 120	1.5 3.3	2m @ 2.4 g/t
					126	127	2.3	2111 @ 2.4 g/t
					127	128	3.1	2m @ 2.7 g/t
					140	141	1.4	<u>@</u> g/t
					178	179	2.6	
					231	232	2.2	
J09010	672592	7165461	270	-60	17	18	2.5	
					18	19	1.4	
					19	20	1.4	
					20	21	3.1	
					21	22	0.7	
					22	23	1.4	
					23	24	1.0	
					24	25	0.2	
					25	26	0.2	
					26	27	1.0	10m @ 1.3 g/t
					114	115	1.1	
					126	127	1.5	
					127			
						128	0.7	
					128	129	0.0	4m @ 1.2 g/t
					129	130	2.5	& <u>.</u> 3.1

HoleID	Easting	Northing	Azimuth	Dip	From	То	Au	Composite
JW09001	671893	7165675	90	-60	38	39	1.6	
JW09003	671924	7165625	90	-60	7	8	2.6	
					8	9	3.9	
					9	10	0.1	
					10	11	1.5	4m @ 2.0 g/t
					52	53	2.1	
					68	69	2.4	
JW09004	671898	7165627	90	-60	34	35	1.3	
					85	86	1.7	
					103	104	1.5	
M09003	672459	7163701	0	-90	149	150	2.5	
					150	151	1.8	2m @ 2.1 g/t
					155	156	7.6	
M09004	672575	7163923	270	-60	136	137	1.3	


Table 1: Significant Drilling Results

More Information

 Justin Brown
 Phone: +61 (8) 9228 4833

 Managing Director
 Mobile: 0438 745 675

The Information in this report that relates to exploration results is based on information compiled by Justin Brown, who is a member of the Australian Institute of Mining & Metallurgy. Mr Brown is a geologist and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Justin Brown consents to the inclusion in the report of the matters based on his information in the form and context in which it appear.

