

## MONTEZUMA MINING COMPANY LTD

PO Box 8535 Perth BC WA 6849 133 - 135 Edward Street Perth WA 6000 **Telephone +61 8 9228 4833** Facsimile +61 8 9328 8302 info@montezumamining.com.au www.montezumamining.com.au ABN 46 119 711 929

#### 11 May 2010

ASX CODE: MZM ISSUED SHARES: 42.10M 52 WEEK HIGH: \$0.34 52 WEEK LOW: \$0.06

#### CONTACT:

JUSTIN BROWN Managing Director +61 438 745 675

#### BOARD:

Denis O'Meara: Chairman Justin Brown: MD Ian Cornelius: Non-Exec

#### **KEY PROJECTS:**

PEAK HILL (85-100%) Gold

DURACK (earning 85%) Gold, Copper

BUTCHER BIRD (100%) Manganese, Copper

MT PADBURY (100% of gold) Gold, Manganese, Iron

### **KEY SHARE POSITIONS:**

AUVEX RESOURCES LTD 7,500,000 FPO Shares

BUXTON RESOURCES LTD 3,010,000 FPO Shares

# HISTORIC DATA CONFIRMS MANGANESE POTENTIAL AT BUTCHER BIRD

- Historic bulk sampling data enhances the potential for Butcher Bird to yield high grade DSO manganese ore.
- Drilling by Alcoa intersected **102m** @ 8.3% Mn including:
  - 26m @ 7.1% Mn, from 0m
  - 42m @ 10.3% Mn, from 34m
  - 14m @ 11.2% Mn, from 82m.
- Data supports a model of high tonnage, low to medium grade beneficiable manganese ore.
- Alcoa drilling also intersected 6m @ 0.62% copper from 176m.

Montezuma is pleased to announce that a review of historic data recently acquired from the WAMEX archives has highlighted the potential for large tonnage, potentially basin scale manganese mineralisation within E52/2350.

In 1982, Alcoa of Australia Ltd drilled a vertical, 350m deep diamond hole in the central northern part of the licence, testing for Volcanogenic Massive Sulphide ("VMS") style mineralisation. This drill hole returned a number of potentially significant manganese intercepts, with the drill logs indicating that the manganese occurs in flat lying siltstone, mudstones and shales as hard bands within the surrounding bedrock.

Subsequent to this work, in 2003 Pilbara Manganese Pty Ltd ("PMPL") undertook trenching in 4 locations, two on Bindi Bindi Hill, one near the Alcoa drill hole, and one at Cadgies Well.

Bulk sampling was undertaken on material from the northern end of the larger trench on Bindi Bindi Hill. The material weighed 4.8 tonnes, and was sieved through 16mm screens. The screened material comprised botryoidal slabs of manganese or lump, which averaged **40.7% Mn**. Further channel sampling from the trench recorded an average of **40.05% Mn** after being sieved through 16mm mesh.

The "lump" component of the material represents approximately 20% of the entire mass of rock and the results provide favourable indications that the generally low bulk grades can be mechanically upgraded to produce high grade DSO equivalent material.

| Location            | Horizon | Туре          | Mn % | Fe %  | Al2O3<br>% | P %   | SiO2<br>% | S %   |
|---------------------|---------|---------------|------|-------|------------|-------|-----------|-------|
| Bindi Bindi Hill T1 | Soil    | Fine fraction | 7.38 | 8.11  | 11.9       | 0.06  | 55.2      | 0.321 |
| Bindi Bindi Hill T1 | Soil    | Mn lump       | 40.5 | 6.24  | 4.53       | 0.062 | 15.7      | 0.052 |
| Bindi Bindi Hill T1 | Soil    | Red/Br. Shale | 29.7 | 16.58 | 4.98       | 0.067 | 18.1      | 0.086 |
| Bindi Bindi Hill T1 | Gypsum  | Fine fraction | 2.51 | 7.27  | 12.4       | 0.072 | 57        | 1.95  |
| Bindi Bindi Hill T1 | Gypsum  | Mn lump       | 40.9 | 4.48  | 4.46       | 0.057 | 16        | 0.461 |
| Bindi Bindi Hill T1 | Gypsum  | Red/Br. Shale | 32.8 | 10.98 | 4.79       | 0.062 | 18.9      | 0.845 |

Table 1: Bulk sampling results for Trench 1

| Location               | Horizon  | Туре          | Sample<br>% | Mn % | Fe % | AI2O3<br>% | Р%    | SiO2<br>% | S %   |
|------------------------|----------|---------------|-------------|------|------|------------|-------|-----------|-------|
| Bindi Bindi<br>Hill T1 | Soil     | Fine fraction | 79.1        | 5.7  | 11.3 | 11.6       | 0.076 | 53.3      | 0.489 |
|                        |          | Mn lump       | 9.3         | 38.6 | 6.4  | 5.2        | 0.063 | 17.3      | 0.151 |
|                        |          | Red/Br. Shale | 11.5        | 3.1  | 35.4 | 7.1        | 0.148 | 29.7      | 0.176 |
| Bindi Bindi<br>Hill T1 | Gypsum   | Fine fraction | 80.7        | 5.5  | 6.8  | 7.8        | 0.067 | 33.8      | 8.09  |
|                        |          | Mn lump       | 11.3        | 38.3 | 4.8  | 5.3        | 0.064 | 19.4      | 0.235 |
|                        |          | Red/Br. Shale | 7.9         | 19.7 | 18.5 | 6.7        | 0.131 | 27.0      | 0.231 |
| Bindi Bindi<br>Hill T1 | Soil     | Fine fraction | 76.5        | 8.0  | 9.6  | 12.3       | 0.069 | 51.2      | 0.421 |
|                        |          | Mn lump       | 19.7        | 41.7 | 4.5  | 4.7        | 0.041 | 15.7      | 0.097 |
|                        |          | Red/Br. Shale | 3.8         | 11.8 | 27.4 | 7.0        | 0.12  | 27.5      | 0.138 |
| Bindi Bindi<br>Hill T1 | Gypsum   | Fine fraction | 52.7        | 9.6  | 9.4  | 9.7        | 0.101 | 39.1      | 3.38  |
|                        |          | Mn lump       | 28.0        | 39.8 | 5.9  | 4.7        | 0.058 | 15.9      | 0.312 |
|                        |          | Red/Br. Shale | 19.2        | 28.9 | 12.2 | 6.3        | 0.086 | 22.5      | 0.305 |
| Bindi Bindi<br>Hill T1 | Soil     | Fine fraction | 45.0        | 4.5  | 10.6 | 12.4       | 0.108 | 48.5      | 1.91  |
|                        |          | Mn lump       | 34.5        | 41.0 | 4.2  | 5.7        | 0.052 | 16.6      | 0.105 |
|                        |          | Red/Br. Shale | 20.4        | 16.3 | 23.6 | 7.1        | 0.217 | 25.1      | 0.135 |
|                        | Gypsum   | Fine fraction | 77.6        | 1.9  | 11.8 | 9.1        | 0.074 | 35.7      | 6.57  |
| Bindi Bindi<br>Hill T1 |          | Mn lump       | 11.8        | 41.7 | 4.5  | 4.6        | 0.039 | 15.3      | 0.201 |
|                        |          | Red/Br. Shale | 10.5        | 7.7  | 30.9 | 7.4        | 0.101 | 27.0      | 0.304 |
| Bindi Bindi<br>Hill T1 | Soil     | Fine fraction | 66.7        | 6.8  | 9.2  | 13.3       | 0.064 | 52.8      | 0.141 |
|                        |          | Mn lump       | 28.3        | 40.4 | 5.6  | 5.0        | 0.049 | 16.4      | 0.067 |
|                        |          | Red/Br. Shale | 5.0         | 34.1 | 11.2 | 5.3        | 0.05  | 18.2      | 0.067 |
| Bindi Bindi<br>Hill T1 | Gypsum   | Fine fraction | 81.0        | 6.2  | 8.5  | 9.6        | 0.071 | 38.3      | 5.45  |
|                        |          | Mn lump       | 16.9        | 38.9 | 4.8  | 5.0        | 0.049 | 18.9      | 0.445 |
|                        |          | Red/Br. Shale | 2.1         | 31.7 | 11.0 | 5.7        | 0.062 | 21.4      | 0.237 |
|                        | Soil     | Fine fraction | 84.5        | 11.5 | 8.2  | 11.2       | 0.059 | 50.0      | 0.171 |
| Bindi Bindi<br>Hill T2 |          | Mn lump       | 15.5        | 45.3 | 2.4  | 4.3        | 0.062 | 13.4      | 0.052 |
|                        |          | Red/Br. Shale | 20.0        | 37.3 | 7.6  | 5.3        | 0.055 | 17.9      | 0.104 |
| Alcoa Hole             | Soil     | Fine fraction | 63.9        | 3.0  | 10.4 | 8.3        | 0.33  | 41.6      | 1.02  |
|                        |          | Mn lump       | 19.4        | 41.9 | 2.9  | 4.7        | 0.02  | 15.6      | 0.043 |
|                        |          | Red/Br. Shale | 16.6        | 19.3 | 17.3 | 7.5        | 0.045 | 28.5      | 0.026 |
| Alcoa Hole             | Calcrete | Fine fraction | 57.1        | 3.1  | 10.6 | 7.3        | 0.036 | 38.2      | 1.17  |
|                        |          | Mn lump       | 16.6        | 39.3 | 6.0  | 4.3        | 0.029 | 16.6      | 0.045 |
|                        |          | Red/Br. Shale | 26.0        | 16.3 | 20.2 | 6.8        | 0.062 | 29.8      | 0.035 |
| Cadgie Well            | Shale    | Fine fraction | 62.6        | 5.2  | 11.8 | 13.5       | 0.095 | 49.4      | 0.258 |
|                        |          | Mn lump       | 24.0        | 40.6 | 5.8  | 4.5        | 0.091 | 15.8      | 0.044 |
|                        |          | Red/Br. Shale | 13.3        | 26.9 | 13.2 | 6.6        | 0.128 | 24.1      | 0.054 |

Table 2: Trench channel sampling results.

If the results of the PMPL and Alcoa work are confirmed in the upcoming drilling programme, and sufficient tonnages of this material can be identified, the potential for this project to yield commercial manganese ores will be significantly enhanced.

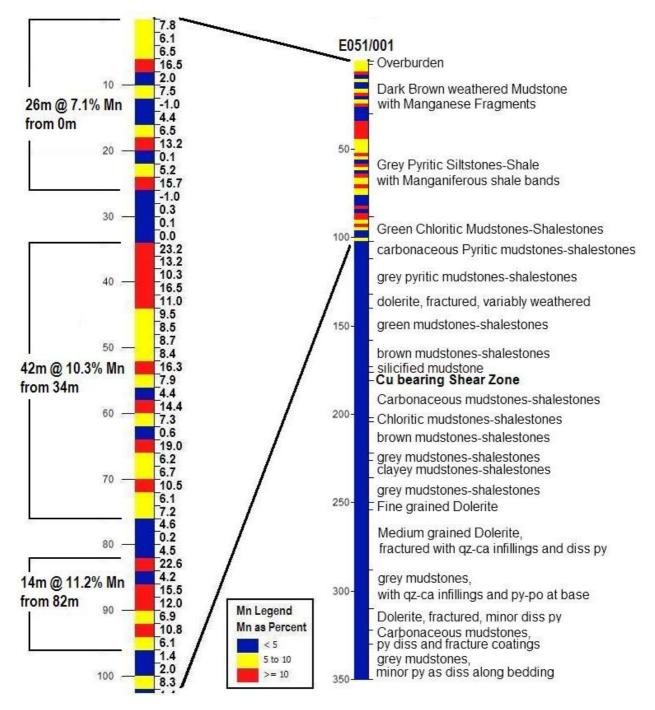



Figure 1: Graphical summary of Drill Hole E051/001, completed by Alcoa in 1982.

In addition to the manganese data from the Alcoa drilling, the samples were also assayed for copper, lead, and zinc. No signs of VMS mineralisation were observed, however a quartz-pyrite-chalcopyrite-bornite shear was intersected at 176m to 182m, with a composite grade of **6m @ 0.62% Cu** from 176m including **2m @ 1% Cu** from 176-178m.

This shear represents a structural copper mineralisation target, potentially analogous to the mineralisation at the Butcher Bird copper mine to the east. Interestingly, the samples were not assayed for gold, despite the favourable geological environment described in the logs. Further drilling will be required to test this potential, however the data provides encouraging support for the regional copper/gold potential of the tenement.

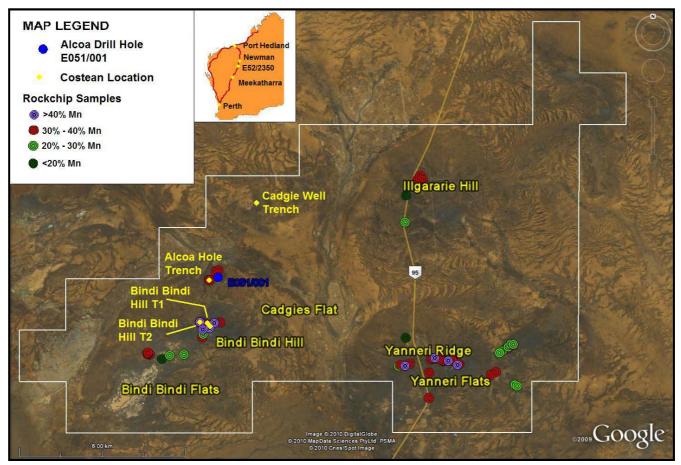



Figure 2: Location map of Alcoa DD Hole E051/001

Drilling at Butcher Bird is scheduled to commence as soon as the rig currently working at the Peak Hill Project has completed an initial phase of approximately 5-6000m of drilling. It is estimated that the Butcher Bird work programme will commence in mid-June.

## More Information Justin Brown

Managing Director

Phone: +61 (8) 9228 4833 Mobile: 0438 745 675

The Information in this report that relates to exploration results is based on information compiled by Justin Brown, who is a member of the Australian Institute of Mining & Metallurgy. Mr Brown is a geologist and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Justin Brown consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.